TRAK ${ }^{\circledR}$ LPM $4^{\text {th }}$ Axis Sample Program

Document: P/N 27497
Version: 011111

Southwestern Industries, Inc.
2615 Homestead Place
Rancho Dominguez, CA 90220-5610 USA
T|310-608-4422 |F|310-764-2668
Service Department: 800.367.3165
e-mail: sales@southwesternindustries.com|service@southwesternindustries.com |web: southwesternindustries.com

Copyright © 2010, Southwestern Industries, Inc. All rights are reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical, photocopying, recording or otherwise, without the prior written permission of Southwestern Industries, Inc.

While every effort has been made to include all the information required for the purposes of this guide, Southwestern Industries, Inc. assumes no responsibility for inaccuracies or omission and accepts no liability for damages resulting from the use of the information contained in this guide.

All brand names and products are trademarks or registered trademarks of their respective holders.

3.0 4-Axis Mill Programming

Program Example 1:

Fig 1.

- Operation 1: This sample part was programmed using the center of the part (Point A) as the X and Y Absolute part Zero when the A axis is at Negative 30.000 degrees. The Z axis Absolute Zero is the top surface of the workpiece (Surface B) when it is finish machined.
- Operation 2: The Absolute Part Zero for the X and Y axis is at the center of the workpiece (Point C) when the A axis is at Zero degrees. The Z axis Absolute Zero is the bottom surface of the workpiece (Surface C).
- Before running the program enter PART/FIX MGMT mode and input the necessary fixture offset data.
- Example 1: A Master Program using 2 programs was used. Two offset fixture locations will be displayed in the PART/FIX MGMT screen as shown below. The fixture locations for both operations are designated as $4^{\text {TH }}$. Using a MASTER PROGRAM gives us the ability to have more than one A Axis Offset in the PART/FIX MGMT screen. Multiple fixture offsets for X, Y, Z, and A can be a useful tool in simplifying set-ups resulting in reduced change-over time.

NOTE: When mounting a fixture to the rotary table, it may be difficult for the operator to secure and bolt the assembly so the workpiece is at "zero degrees" in the X-Y Plane. Any error can be corrected by inserting a value in the A Offset.

- PART/FIXTURE MANAGEMENT SCREEN DESRIPTION

- OFFSET DESCRIPTION EXAMPLE 1 (Programmed in mm)
- The X Offset is the distance from rotary table face to part zero.
- The Y Offset is the distance from part zero to the centerline of rotation of the rotary table.
- The Z Offset is the distance from part zero to the centerline of rotation of the rotary table.
- In the following example, the A axis is being rotated with a POSITIONING EVENT and the A Offset is used to compensate for the error in how the fixture was installed.
- Two workpieces are being machined. In this example the first workpiece is located 350 mm from the face of the rotary table in the X -minus direction. For the second workpiece we are using the PARTS/FIXTURE feature with the second workpiece shifted 125 mm in the X-plus direction (towards the rotary table).

- Programming Aspects Shown On This Part

- OPERATION 1: Face milling, center drilling, drilling, tapping with the Aaxis positioned at Negative 30 degrees Absolute. Part Zero for the Z axis is the top finish milled surface. Part zero for the X and Y axis is the center of the workpiece.

OPERATION 2: Rotate the A-axis to Zero degrees Absolute using a Positioning Event. Part Absolute Zero has been moved to the bottom surface of the workpiece for the Z axis. Part Absolute Zero for the X and Y axis remains in the center of the workpiece. Once these values are determined, they must be input into the PART/FIX MGMT screen. The 4 holes can be machined complete at a 30 degree angle relative to the top face.

Tooling Data: Enter the proper tooling data

$\square \mathrm{PT/}$ Offine									-
PROG SIU MP/N 21985C									MM
ATC						PART PROGRAM TOOL TABLE			
Loc	Dia	Type	Z Offset	Z Mod	Dia Mod	Tool No	Dia	Type	ATC Loc
1	9.525	Ctr Drill	-28.448	0.000	0.000	1	75.000	Face Mill	4
2	0.000	None	0.000	0.000	0.000	2	10.000	Ctr Drill	5
3	7.925	Ruf EM	-54.458	0.000	0.000	4	5.000	Drill	6
4	75.000	Face Mill	12.440	0.000	0.000	5	6.000	Tap	7
5	10.000	Ctr Drill	23.300	0.000	0.000	6	11.000	Fin EM	8
6	5.000	Drill	-3.453	0.000	0.000	7	7.000	Drill	9
7	6.000	Tap	-4.112	0.000	0.000				
8	11.000	Fin EM	8.644	0.000	0.000				
9	7.000	Drill	5.556	0.000	0.000				
10	7.925	Fin EM	-56.162	0.000	0.000				
11	0.000	None	0.000	0.000	0.000				
12	0.000	None	0.000	0.000	0.000				
13	0.000	None	0.000	0.000	0.000				
14	0.000	None	0.000	0.000	0.000				
15	0.000	None	0.000	0.000	0.000				
16	0.000	None	0.000	0.000	0.000				
17	0.000	None	0.000	0.000	0.000				
18	0.000	None	0.000	0.000	0.000				
19	0.000	None	0.000	0.000	0.000				
20	0.000	None	0.000	0.000	0.000				
21	0.000	None	0.000	0.000	0.000				
ATC LOCATION : 4									
TO	REMO TOO	NOTES	DISABLE LOC						RETURN

- Run Strategy: Determine the method by which the parts will be run, Tool by Tool or Part by Part. In most applications running both workpieces in Tool by Tool mode results in less tool changes which in turn reduces cycle time.

- Shown below are the EVENTS of both programs contained in the

 Master Program- The Program name screen (EVENT 0), must the have the A axis enabled. Press YES for FOURTH AXIS REQUEST.
- NOTE: Before programming, make sure the Fourth Axis has been turned on. Enter MACHINE SETUP MODE and press THE 4TH AXIS ON soft key.
- FIRST PROGRAM - Operation 1:

$\square \mathrm{PT} / 0$ Offline ${ }^{\text {a }}$					
PROG	MPIN 21985C : 219850P1				MM
Program Name Scale Dwell Request Fourth Axis Request Event Comments Dimension Definition		$\begin{aligned} & 219 \\ & 1.00 \\ & \mathrm{NO} \\ & \text { YES } \\ & \mathrm{NO} \\ & \text { PAF } \end{aligned}$	OP1 GEO	ETRY	

- Event 1: Auto Coolant ON
- Event 2: Position the A axis to negative 30.000 degrees absolute. From the operators view standing in front and to the left of the rotary table, the trunnion will rotate counterclockwise enabling us to mill the top surface.

- Event 3: Using FACE MILL Event to mill top of workpiece. Z zero in EVENT 3 is the finished surface.
- Event 4: Using BOLT HOLE Event to Center Drill

- Event 5: Using BOLT HOLE Event to Drill
- Event 6: Using BOLT HOLE Event to Tap

- Second Program: Operation--2:

- Event 1: Position the A axis to Zero degrees absolute. From the operators view standing in front and to the left of the rotary table, the trunnion will rotate clockwise enabling us to machine complete the 4 counterbore holes.
- Event 2 thru 5 : Center Drill four holes using tool \# 2 at the specified Zero degree angle as shown on the detailed print.
- Event 6 thru 9 : Drill four holes using tool \# 7 at the specified Zero degree angle as shown on the detailed print.
- Event 10 thru 13 : Counterbore the 4 holes using tool \# 6 to a depth that is 20.000 mm above the bottom surface of the workpiece at the specified Zero degree angle as shown on the detailed print.
- Event 14 : Using an AUXILIARY EVENT inserting a 3 shuts off the AUTO COOLANT and inserting a 6 enables Part Change Position, bringing the table forward towards the operator for ease of loading and unloading parts.

Program Example 2:

Fig - 1

- Operation 1: This sample part was programmed using Point \mathbf{A}, as shown above, as the X, Y and Z Absolute Part Zero when the A axis is at a Positive 90.000 degrees.
- Operation 2: Point B, as shown above, is the X, Y and Z Absolute Part Zero when the A axis is at a Positive 270.000 degrees.
- Operation 3: Point A, as shown above, is the X, Y and Z Absolute Part Zero when the A axis is at a Zero (0.000) degrees.

Fig. 2

- Example 2: A Master Program using 3 programs was used. Three offset fixture locations will be displayed in the PART/FIX MGMT screen as shown below. The fixture locations for all three operations are designated as 4^{TH}. In this example, angular rotation of the rotary table is accomplished by using an A Offset value for each operation.
1: No POSITIONING EVENTS are used in this program to orient the A axis as in the previous example. As each individual program runs, the A Offset in the PART/FIX MGMT SCREEN commands the rotary table to orient to the specified value that has been input for that particular operation.
2 : This part was made from solid stock ; 3.25"L x 1.75 "W x 1.00 H

- Fixture Offset 1: The trunnion as pictured below is 4.0 inches square. The part is located in the center of the trunnion. With the bottom of the workpiece being Part Zero, the values for the Y Offset is negative 2.0000 inches. This is due to the fact that the trunnion face is 2.0000 inches from the center of rotation of the A axis in the negative Y direction. The Z Offset is positive 0.7800 inches, half the width of the workpiece (Point A in figure 1)
- Fixture Offset 2: Here, with the bottom of the workpiece being Part Zero, the values for the Y Offset is positive 2.0000 inches. This is due to the fact that the trunnion face is 2.0000 inches from the center of rotation of the A axis in the positive Y direction. The Z Offset is again positive 0.7800 inches, half the width of the workpiece (Point B in figure 1).
- Fixture Offset 3: Here, with the bottom of the workpiece being Part Zero, the values for the Z Offset is positive 2.0000 inches. This is due to the fact that the trunnion face is 2.0000 inches from the center of rotation of the A axis in the positive Z direction.
The Y Offset is a positive . 7800 inches, half the width of the workpiece (Point A in figure 1). In the Y axis, Point A is on the positive side of the center of rotation.

Tooling Data: Enter the proper tooling data

$\square \mathrm{Pr} / \mathrm{ofitl}^{\text {a }}$									- $\square^{\text {a }}$
PROG SIU MP/N 265341									INCH
ATC						PART PROGRAM TOOL TABLE			
Loc	Dia	Type	Z Offset	Z Mod	Dia Mod	Tool No	Dia	Type	ATC Loc
1	0.3750	Ctr Drill	-1.1200	0.0000	0.0000	1	0.7500	Fin EM	2
2	0.7500	Fin EM	2.1340	0.0000	0.0000	2	0.7500	Ruf EM	3
3	0.7500	Ruf EM	2.1980	0.0000	0.0000	3	0.1360	Drill	4
4	0.1360	Drill	1.0030	0.0000	0.0000	4	0.1500	Tap	12
5	0.3120	Ruf EM	0.9870	0.0000	0.0000	7	0.3750	Ctr Drill	1
6	0.3120	Fin EM	0.7690	0.0000	0.0000	9	0.1800	Drill	13
7	0.1870	Fin EM	-0.1790	0.0000	0.0000	11	0.0600	Other	14
8	0.0930	Fin EM	-0.2450	0.0000	0.0000	12	0.3120	Ruf EM	5
9	0.0890	Drill	0.8960	0.0000	0.0000	13	0.3120	Fin EM	6
10	0.1120	Tap	2.3670	0.0000	0.0000	14	0.2500	Ctr Drill	15
11	0.2500	Other	0.7840	0.0000	0.0000	15	0.1960	Drill	16
12	0.1500	Tap	2.6570	0.0000	0.0000				
13	0.1800	Drill	2.4560	0.0000	0.0000				
14	0.0600	Other	1.9870	0.0000	0.0000				
15	0.2500	Ctr Drill	0.3450	0.0000	0.0000				
16	0.1960	Drill	0.5870	0.0000	0.0000				
17	0.0000	None	0.0000	0.0000	0.0000				
18	0.0000	None	0.0000	0.0000	0.0000				
19	0.0000	None	0.0000	0.0000	0.0000				
20	0.0000	None	0.0000	0.0000	0.0000				
21	0.0000	None	0.0000	0.0000	0.0000				
ATC LOCATION : 2									
$\begin{aligned} & \text { TOO } \\ & \text { CRII } \end{aligned}$	REM TOO	NOTES	DISABLE LOC						RETURN

- Programming Aspects Shown On This Part

- OPERATION 1:
- EVENT 1: Turn on Auto Coolant
- EVENT 2 thru 8: Using . 75 " roughing end mill to rough mill the top step
- (refer to fig. 1-. 41" and $.22^{\prime \prime}$ dim's)
- EVENT 9 thru 13: Using .75 " finish end mill to finish mill the rough form milled in events 2 thru 8 . (refer to fig. 1-.41" and $.22^{\prime \prime}$ dim's)
- EVENT 14 and 15: Center drilling for two .180 " dia. holes using a $.375^{\prime \prime}$ center drill.
- EVENT 16 and 17: Drill 2 holes using a .180 " dia. drill
- EVENT 18 thru 21: Using a 90 degree deburring tool to deburr the outer form. (refer to fig. 1-.64" dim. With .25 " radius)

Fig 3
Trunnion at $\mathbf{9 0 . 0 0 0}$ degrees

- OPERATION 2:

- EVENT 1 thru 7: Using .75" roughing end mill to rough mill the top step
- (refer to fig. 1-.84 dim. With . 25 " radius on the outer form)
- EVENT 8 thru 11: Using . 75 " finish end mill to finish mill the rough form milled in events 1 thru 7 . (refer to fig. 1-. 84 " dim with .25 " radius on the outer form)
- EVENT 12: Using . 75 " finish end mill to finish mill the top step (refer to fig. 1-.22" and . $41^{\prime \prime}$ dim's)
- EVENT 13 and 14: Center drilling for two .180" dia. holes using a .375 " center drill.
- EVENT 15 and 16: Drill 2 holes using a .180" dia. drill
- EVENT 17 and 18: Tap the 6-32 dia. holes
- EVENT 19 thru 22: Using a 90 degree deburring tool to deburr the outer form. (refer to fig. 1-.64" dim. With .25 " radius)

Fig 4
Trunnion at 270.000 degrees
(Rear View)

Fig 5
Trunnion at 0.000 degrees

- OPERATION 3:

- EVENT 1: Using a .312 " dia. roughing end mill to rough mill the center slot
- EVENT 2: Using a .312" dia. finish end mill to finish mill the center slot
- EVENT 3 thru 6: Using a .25" dia. center drill to center drill 4 holes
- EVENT 7 thru 10: Using a .196" dia drill to drill 4 holes
- EVENT 11: Turn off AUTO COOLANT and move table to part change position

Program Example 3:

Fig -1

- Operation 1: This sample part was programmed using Point A, as shown above, as the X, Y and Z Absolute Part Zero when the A axis is at a Positive 270.000 degrees. Point A is shown in "space" in the isometric view because the material has been removed from the blank or raw stock.
- Operation 2: Point B, as shown above, is the X, Y and Z Absolute Part Zero when the A axis is at a Positive 90.000 degrees.
- Operation 3: Point B, as shown above, is the X, Y and Z Absolute Part Zero when the A axis is at a Zero (0.000) degrees.

Fig 2

- Example 3: A Master Program using 3 programs was used. Three offset fixture locations will be displayed in the PART/FIX MGMT screen as shown below. The fixture locations for all three operations are designated as 4^{TH}. In this example, angular rotation of the rotary table is accomplished by using an A Offset value for each operation. Two parts are located on the face of the trunnion.
Parts/Fixture was used with an \mathbf{X} axis shift of 2.0000 inches.
NOTES
1 : No POSITIONING EVENTS are used in this program to orient the A axis as in the previous example. As each individual program runs, the A Offset in the PART/FIX MGMT SCREEN commands the rotary table to orient to the specified value that has been input for that particular operation.
2 : This part was made from solid stock ; 1.30"L x 1.00’W x . 50 " H

$\square \mathrm{P}$ [/ Ofifine						- $\square^{\text {® }}$
PROG SIU MPIN 265346op2						INCH
ATC Pos $0 \square$ No Tool						
Part/Fixture Management						
Part		1		2	3	
P/N		2653460P2		2653460P3	2653460P4	
Fixture Location Fixture Number		4 TH		4 TH	4 TH	
		1		1	1	
X Offset		-5.7500		-5.7500	-5.7500	
Y Offset		2.0000		-2.0000	-0.3900	
Z Offset		0.3900		0.3900	2.0000	
A Offset		270.0000		90.0000	0.0000	
Parts/Fixture		2		2	2	
X Shift		2.0000		2.0000	2.0000	
Y Shift		0.0000		0.0000	0.0000	
Z Shift		0.0000		0.0000	0.0000	
X 2.2990 4TH						
12.7340 4 TH A 0.000 4 TH						
X SHIFT : 2.0000						
PICTURE	NOTES	GOTO	$\underset{\text { SAFETY }}{z}$		$\begin{aligned} & \text { SPIN } \\ & \text { SPEED } \end{aligned}$	RETURN

- Fixture Offset 1: The trunnion as pictured below is 4.0 inches square. The part is located in the center of the trunnion. With the bottom of the workpiece being Part Zero, the values for the Y Offset is positive 2.0000 inches. This is due to the fact that the trunnion face is 2.0000 inches from the center of rotation of the A axis in the positive Y direction. The Z Offset is positive 0.3900 inches, half the width of the workpiece (Point A in figure 1)
- Fixture Offset 2: Here, with the bottom of the workpiece being Part Zero, the values for the Y Offset is negative 2.0000 inches. This is due to the fact that the
trunnion face is 2.0000 inches from the center of rotation of the A axis in the negative Y direction. The Z Offset is again positive 0.3900 inches, half the width of the workpiece (Point B in figure 1).
- Fixture Offset 3: Here, with the bottom of the workpiece being Part Zero, the values for the Z Offset is positive 2.0000 inches. This is due to the fact that the trunnion face is 2.0000 inches from the center of rotation of the A axis in the positive Z direction.
The Y Offset is a negative . 3900 inches, half the width of the workpiece (Point A in figure 1). Point A with the A axis at zero degrees is on the negative side of the center of rotation in the Y axis direction.

Tooling Data: Enter the proper tooling data

$\square \mathrm{PT} / \mathrm{Offl}_{\text {dine }}$									- $\square_{\text {- }}$
PROG SIU MPIN 265346op2									INCH
ATC						PART PROGRAM TOOL TABLE			
Loc	Dia	Type	Z Offset	Z Mod	Dia Mod	Tool No	Dia	Type	ATC Loc
1	0.3750	Ctr Drill	-1.1200	0.0000	0.0000	1	0.3750	Ctr Drill	1
2	0.0620	Drill	0.9870	0.0000	0.0000	2	0.0620	Drill	2
3	0.3750	Fin EM	1.4530	0.0000	0.0000	3	0.3750	Fin EM	3
4	0.0930	Drill	1.8950	0.0000	0.0000	4	0.0930	Drill	4
5	0.1120	Tap	2.4110	0.0000	0.0000	5	0.1120	Tap	5
6	0.5000	Fin EM	0.3260	0.0000	0.0000	7	0.5000	Fin EM	6
7	0.1870	Fin EM	-0.1790	0.0000	0.0000	8	0.1870	Fin EM	7
8	0.0930	Fin EM	-0.2450	0.0000	0.0000	9	0.0930	Fin EM	8
9	0.0890	Drill	0.8960	0.0000	0.0000	10	0.0890	Drill	9
10	0.1120	Tap	2.3670	0.0000	0.0000	11	0.1120	Tap	10
11	0.2500	Other	0.7840	0.0000	0.0000	12	0.2500	Other	11
12	0.1500	Tap	2.6570	0.0000	0.0000				
13	0.1800	Drill	2.4560	0.0000	0.0000				
14	0.0600	Other	1.9870	0.0000	0.0000				
15	0.2500	Ctr Drill	0.3450	0.0000	0.0000				
16	0.1960	Drill	0.5870	0.0000	0.0000				
17	0.0000	None	0.0000	0.0000	0.0000				
18	0.0000	None	0.0000	0.0000	0.0000				
19	0.0000	None	0.0000	0.0000	0.0000				
20	0.0000	None	0.0000	0.0000	0.0000				
21	0.0000	None	0.0000	0.0000	0.0000				
ATC LOCATION : 1									
$\begin{aligned} & \text { TOO } \\ & \text { CRIE } \end{aligned}$	REMO TOO	NOTES	$\begin{aligned} & \text { DISABLE } \\ & \text { LOC } \end{aligned}$						RETURN

- Programming Aspects Shown On This Part
- OPERATION 1:
- A axis at 270.000 degrees
- EVENT 1: Turn on Auto Coolant
- EVENT 2: Using a finish end mill to mill the side of workpiece (refer to fig. 1 - for the width of the workpiece - .7800" dim.)
- EVENT 3 and 4: Center drill the 2 side holes
- EVENT 5 and 6: Using a .06" dia drill, drill the 2 side holes (holes for clearance in the milled section - .03" rad. callout)
- EVENT 7 and 8: Using a .375" dia. end mill, mill the profile (refer to fig. 1 for the .110" and .130" dim's.)

Fig 3
Trunnion at 270.000 degrees

OPERATION 2:

- A axis at 90.000 degrees
- EVENT 1: Using a finish end mill to mill the side of workpiece (refer to fig. 1 - for the width of the workpiece - .7800" dim.)
- EVENT 2: Center drill for the tapped hole (refer to fig. 1 for 4-48 tapped hole)
- EVENT 3: Drill
- EVENT 4: Tap 4-48 hole

Fig 4
Trunnion at 90.000 degrees

- OPERATION 3:

- A axis at Zero degrees
- EVENT 1: Using MILL EVENT to rough mill the face (Refer to the .110" dim. and .28 " dim. leaving .005 " for finish)
- EVENT 2: Using RECT PCKT to finish mill EVENT 1
- EVENT 3: Using RECT PCKT to finish mill the lower step, intersecting the .03" rad. (Refer to fig. 1 for .130" dim.)
- EVENT 4: Using RECT PCKT to finish mill the .120 " wide slot
- EVENT 5 and 6: Center Drill 2 places for the 4-40 tapped holes
- EVENT 7 and 8: Drill 2 places for the 4-40 tapped holes
- EVENT 9 and 10: Tap 4-40, 2 places
- EVENT 11: Engrave the number 6
- EVENT 12: Mill straight line under the number 6
- EVENT 13: Turn off AUTO COOLANT and move table to part change position

Fig 5
Trunnion at 0.000 degrees

Program Example 4:

i26827-6
Fig 1

- Operation 1: The fixturing used in this sample part is being held in a 3 jaw chuck. The workpiece is centered on the rotary axis (A axis) centerline of rotation. Typically, this type of part uses the center of the workpiece which coincides with the center of rotation as the Y and Z Part Absolute Zero. The Part Abspolute Zero for the X axis can be at any place along the length of the workpiece. In this example the X Part Absolute Zero is the front face of the hex, Point A, as shown above.

Fig 2

- Example 4: A single program is used to program all of the machining operations. One offset fixture location will be displayed in the PART/FIX MGMT screen as shown below. The fixture location is designated as $4^{\text {TH }}$. In this example, angular rotation of the rotary table is accomplished by using POSITIONING EVENTS in the program. There are no values in the Y and Z fixture offsets. Remember, the centerline of rotation of the rotary axis coincides with the centerline of the workpiece. The only time we require values for the Y and Z axis is if Part Absolute Zero is NOT at the centerline of rotation.

NOTES

1 : POSITIONING EVENTS are used in this program to orient the A axis.
2 : Values can be inserted in the Y and Z offsets as an aid, helping the operator adjust workpiece dimensions that may be out due to part deflection, tooling deflection etc.
3: This part was made from solid stock ; 5.0 " $\mathrm{L} \times 3.625$ " dia.
4: There are two approaches that can be taken in how we machine this workpiece. Each face could have been machined complete before continuing to the next face of the workpiece. Certain applications may require this due to type of material, workpiece deflection etc. This must be considered prior to programming. Each tool would have to be called for each individual face on the hex, resulting in additional tool changes and an increase in cycle time. In this example, each tool that is called machines all six faces of the workpiece before calling up the next tool. This results in less tool changes and a shorter cycle time.

- Fixture Offset 1: The workpiece as pictured in fig. 2 is 3.625 " round stock by 5.0 inches in length. The part is located in the center of the 3 jaw chuck. With the centerline of the workpiece being Part Zero, the values for the Y and Z Offset is zero (0.0000"). The LPM ProtoTrak knows where the centerline of the rotary axis is and where the face of the rotary table is. This is set at the factory and remains constant. The X Offset is negative 6.198 inches (Point A in figure 1), the distance from the face of the rotary table to the face of the workpiece.

Tooling Data: Enter the proper tooling data

$\square \mathrm{PT/}$ Offline									\square - $\square^{\text {a }}$
PROG SIU PIN 43981									INCH
ATC						PART PROGRAM TOOL TABLE			
Loc	Dia	Type	Z Offset	Z Mod	Dia Mod	Tool No	Dia	Type	ATC Loc
1	0.3750	Ctr Drill	2.3650	0.0000	0.0000	1	2.0000	Face Mill	2
2	2.0000	Face Mill	2.1450	0.0000	0.0000	2	0.3750	Ctr Drill	1
3	0.1870	Drill	1.8470	0.0000	0.0000	3	0.1870	Drill	3
4	0.4370	Fin EM	2.4120	0.0000	0.0000	4	0.4370	Fin EM	4
5	0.5000	Fin EM	0.1320	0.0000	0.0000				
6	0.3120	Fin EM	0.7690	0.0000	0.0000				
7	0.0000	None	0.0000	0.0000	0.0000				
8	0.0930	Fin EM	-0.2450	0.0000	0.0000				
9	0.0890	Drill	0.8960	0.0000	0.0000				
10	0.1120	Tap	2.3670	0.0000	0.0000				
11	0.2500	Other	0.7840	0.0000	0.0000				
12	0.1500	Tap	2.6570	0.0000	0.0000				
13	0.1800	Drill	2.4560	0.0000	0.0000				
14	0.0600	Other	1.9870	0.0000	0.0000				
15	0.2500	Ctr Drill	0.3450	0.0000	0.0000				
16	0.1960	Drill	0.5870	0.0000	0.0000				
17	0.0000	None	0.0000	0.0000	0.0000				
18	0.0000	None	0.0000	0.0000	0.0000				
19	0.0000	None	0.0000	0.0000	0.0000				
20	0.0000	None	0.0000	0.0000	0.0000				
21	0.0000	None	0.0000	0.0000	0.0000				
ATC LOCATION : 2									
$\begin{aligned} & \text { TOO } \\ & \text { CRIE } \end{aligned}$	REMO TOO	NOTES	$\begin{aligned} & \text { DISABLE } \\ & \text { LOC } \end{aligned}$						RETURN

- Programming Aspects Shown On This Part
- OPERATION 1, TOOL 1:
- A axis starting at 0.000 degrees
- EVENT 1: Turn on Auto Coolant
- EVENT 2 thru 13: Using 2.000" facemill to mill all six sides of workpiece . Finish size of the "hex" is 3.000 " $\times 2.500$ " in length.

$\square \mathrm{PT/O}$ Offing								$\frac{\square \square 区}{\square I N C H}$
PROG	PIN 43981							
EVENT 4		POSITION		EVENT 5		FACE MILL		
X END		1.2500	abs	X1		0.2000	abs	
Y END		0.0000	abs	Y1		1.2000	abs	
A END		60.0000	abs	x3		2.5000	abs	
Z RAPID		5.0000	abs	Y3		-1.2000	abs	
RPM		2400.00		Z RAPID		1.9000	abs	
TOOL \#		1		Z END		1.5000 abs		s
				\# PASSESZ FIN Cut		0.0050		
				$\begin{aligned} & \text { Z FIN CUT } \\ & \text { RPM } \end{aligned}$		2000.00		
				RPMFIN RPM		2500.00		
				Z FEEDRATE		20.0		
				xrz feedrate		40.0		
				FIN feEdrate		30.0		
				TOOL \#		1		
?		X1: 0.2000 abs						
			DATA BOTTOM	INSERT EVENT	DELETE EVENT			

- OPERATION 1, TOOL 2:
- A axis starting at 0.000 degrees
- EVENT 14 thru 25: Using a .375" dia center drill, a 4 hole BOLT HOLE pattern was center drilled on all six sides of the workpiece

- OPERATION 1, TOOL 3:
- A axis starting at 0.000 degrees
- EVENT 26 thru 37: Using a .187" dia drill, a 4 hole BOLT HOLE pattern was drilled to a $1.0000^{\prime \prime}$ depth on all six sides of the workpiece

- OPERATION 1, TOOL 4:
- A axis starting at 0.000 degrees
- EVENT 38: Position the A axis at 0.000 degrees
- EVENT 39: Using a . 437 dia end mill, a 1.500" square pocket is milled 1.0000 " deep with a .2500 " Conrad. The pocket is milled with the A axis at 0.000 degrees.
- EVENT 40: Turns off the AUTO COOLANT and positions the machine at PART CHANGE POSITION.

